پیش‌بینی مقادیر حداکثر بارش روزانه با استفاده از سیستم‌های هوشمند و مقایسه آن با مدل درختی M5؛ مطالعه موردی ایستگاه‌های اهر و جلفا

نویسندگان

  • فرناز نهرین سازه های آبی گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز
چکیده مقاله:

بارش یکی از مهمترین اجزا چرخه آب بوده و در سنجش خصوصیات اقلیمی هر منطقه ای نقش بسیار مهمی ایفا می‌کند. پیش‌بینی مقادیر بارش حداکثر روزانه در ماه برای اهداف مختلفی نظیر برآورد سیلاب، رواناب، رسوب، برنامه‌ریزی آبیاری و مدیریت حوضه‌های آبریز دارای اهمیت زیادی است.پیش‌بینی بارش در هر منطقه‌ای نیازمند وجود داده‌های دقیق اندازه‌گیری شده از قبیل رطوبت، دما، فشار، سرعت باد و غیره می‌باشد. محدودیت‌هایی از قبیل نبود اطلاعات کافی در مورد مقدار بارش در مقیاس‌های زمانی و مکانی و همچنین پیچیدگی روابط بین پارامترهای هواشناسی مرتبط با بارش، محاسبه این پارامتر با استفاده از روش‌های معمول را غیردقیق و غیرقابل اعتماد می‌کند. در این تحقیق پارامترهای هواشناسی ایستگاه‌های اهر و جلفا در استان آذربایجان شرقی، به عنوان ورودی مدل‌های هوشمند شبکه‌های عصبی مصنوعی، برنامه‌ریزی ژنتیک و مدل درختی M5 تعریف گردید و برای نتایج بدست آمده از این سه مدل دو آماره R و RMSE محاسبه گردید. در دو ایستگاه اهر و جلفا روش برنامه‌ریزی ژنتیک به ترتیب با (R=0.88) و (RMSE=3.32) و (R=0.87) و (RMSE=3.79) بهترین نتیجه را نشان دادند. در حالت کلی می‌توان گفت که هر سه روش مذکور ضمن رقابت با یکدیگر نتایج نسبتا دقیقی را جهت پیش‌بینی حداکثر بارش روزانه در ماه مورد نظر در منطقه ارائه می‌کنند ولی به دلیل ارائه روابط خطی ساده و قابل فهم توسط مدل درختی M5، این روش می‌تواند به عنوان روشی کاربردی و جایگزین برای محاسبه حداکثر بارش روزانه در ماه مورد توجه قرار گیرد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش‎بینی مقادیر بارش ماهانه با استفاده از شبکه‎های عصبی مصنوعی و مدل درختی M5 (مطالعۀ موردی: ایستگاه اهر)

بارش یکی از مهم‎ترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می‎کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامه‎ریزی آبیاری و مدیریت حوضه‎های آبریز، اهمیت زیادی دارد. پیش‎بینی بارش در هر منطقه‎ای نیازمند وجود داده‎های دقیق اندازه‎گیری‎شده‎ای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیت‎هایی چون، نبود اطلاعات کافی در مو...

متن کامل

مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure

کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...

متن کامل

پیش‎بینی مقادیر بارش ماهانه با استفاده از شبکه‎های عصبی مصنوعی و مدل درختی m5 (مطالعۀ موردی: ایستگاه اهر)

بارش یکی از مهم‎ترین اجزای چرخۀ آب است و در سنجش خصوصیات اقلیمی هر منطقه، نقش بسیار مهمی ایفا می‎کند. تخمین مقادیر بارش ماهانه برای اهداف مختلفی چون، برآورد سیلاب، خشکسالی، برنامه‎ریزی آبیاری و مدیریت حوضه‎های آبریز، اهمیت زیادی دارد. پیش‎بینی بارش در هر منطقه‎ای نیازمند وجود داده‎های دقیق اندازه‎گیری‎شده‎ای مانند، رطوبت، دما، فشار، سرعت باد و غیره است. محدودیت‎هایی چون، نبود اطلاعات کافی در مو...

متن کامل

پیش بینی بارش ماهانه با مدل درختی M5 و مقایسه آن با روشهای کلاسیک آماری )مطالعه موردی : ایستگاه سینوپتیک ارومیه(

در این تحقیق جهت تخمین داده‌های بارش ماهانه ایستگاه ارومیه که از سال 2006 تا 2007 مفقود فرض شده است از روش‌های آماری کلاسیک و مدل درختی M5 با استفاده از نرم‌افزارWeka و به کارگیری ایستگاه‌های مهاباد، خوی، سلماس، تکاب و ماکو استفاده شده است. در بین ایستگاه‌های مورد مطالعه، ایستگاه مهاباد با (r=0.90) بیشترین همبستگی را با ایستگاه ارومیه داشت. 26 سناریو از آمار ده ساله ایستگاه‌های مجاور در تخمین ب...

متن کامل

مدل‌سازی تلفات تبخیر از مخزن سد علویان با استفاده از مدل درختی M5 و مقایسه آن با روش‌های تجربی

تلفات تبخیر از سطح آزاد آب یکی از پارامترهای مهم در مدیریت منابع آب است. در این تحقیق از مدل درختی M5 به‌عنوان یکی از شیوه‌های داده­کاوی در برآورد تبخیر از سطح آزاد آب سد علویان مراغه استفاده شد. نتایج حاصل نشان داد بهترین حالت مدل درختی M5 با ضریب همبستگی 851/0 و جذر میانگین مربعات خطا کمتر از 587/1 میلی­متر قادر به ارائه روابط خطی جهت مدل‌سازی مقدار تبخیر از سطح آزاد آب می‌باشد. روابط ارائه ش...

متن کامل

پیش‌بینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکه‌های عصبی مصنوعی المانی (ENN)

برآورد صحیح آبدهی رودخانه‌ها یکی از موارد مهم در پیش‌بینی خشکسالی، سیلاب، طراحی سازه­‌های آبی، بهره‌برداری از مخازن سدها و کنترل رسوب می‌باشد. از این‌رو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روش‌های هوشمند مانند شبکه‌های عصبی مصنوعی و روش‌های مختلف داده‌کاوی بهره گرفته‌اند. در این مطالعه، جهت پیش­بینی جریان روزانه رودخانه اهرچای، از روش­های شبکه عصبی مصنوعی المانی (ENN) و قوانین درخت...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 2

صفحات  83- 98

تاریخ انتشار 2014-02-20

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023